How do we define poor performance?

Laurent Couëtil, DVM, PhD, Dip.ACVIM

Purdue University is an equal access/equal opportunity/affirmative action university.

If you have trouble accessing this document because of a disability, please contact PVM Web Communications at vetwebteam@purdue.edu.

Outline

- Poor performance definition
- Approach to poor performance
- Adaptation to exercise and training
- Factors limiting performance
- Causes of poor performance
- Clinical evaluation of the RT
- Exercise testing

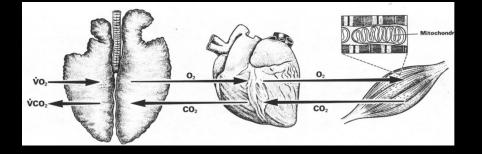
Poor Performance Definition

- Decrease in performance level
 - Acceptable level of performance previously
- Exercise intolerance
 - Marked decrease in performance level
 - Not capable of training at previous level
- Unable to compete at expected level
 - Unproven horse
 - Expected level based on physical characteristics, genetic potential or training status
 - Training satisfactorily

Approach to poor performance evaluation

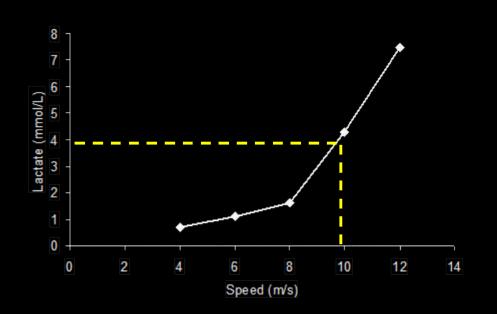
- Agreement with owner/ trainer on complaint
 - Decreased performance?
 - Exercise intolerance?
 - Expected level?
- Exercise intensity
 - High (Ex. Racehorses)
 - Moderate (Ex. Reining Horse)
 - Low (Ex. 4-H Horse)
- Fitness level

Approach to poor performance evaluation

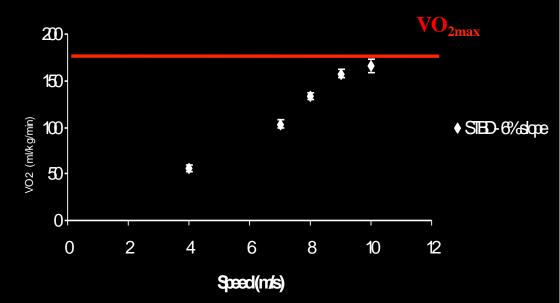

Exercise Intensity	Performance	Disease severity	Sensitivity to testing
High	↓ performance	mild	high
Moderate	↓ performance / exercise intolerance	moderate	moderate
Low	exercise intolerance	severe	mild

Approach to poor performance evaluation

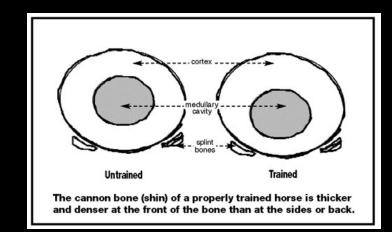
- Compare individual's previous and current measurements
 - Objective performance criteria (running time, finishing position, etc.)
 - **Ry**iological parameters (heart rate, respiratory rate, etc.)
 - Guide therapy
 - Clinical signs (nasal discharge, cough, respiratory effort, etc.)
 - Response to therapy
- Compare parameters measured over an extended period of time
 - Objective performance criteria
 - **Ry**iological parameters
 - Clinical signs


Adaptation to exercise

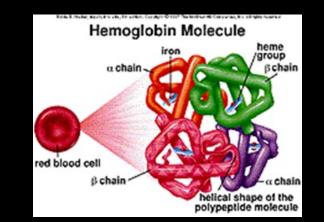
- Respiratory
 - V_E x 30, V_E=Expiratory
 Volume
- Cardio-Vascular
 - HR x 8-10, HR=Heart Rate
 - CO x 10, CO= Cardiac
 Output
 - [Hb] x 2, Hb=Hemoglobin


Adaptation to exercise

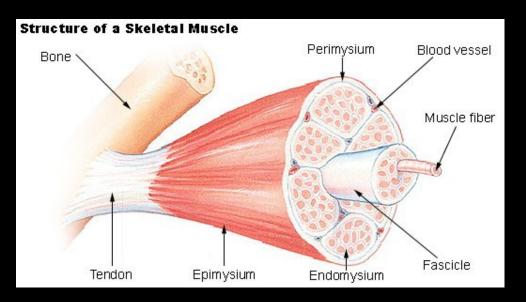
- Muscular
 - > 80 % CO during strenuous exercise
 - Lactate
 - Lactate is a by-product of glucose utilization without the presense of oxygen. With training, lactate levels are lower during strenuous exercise.



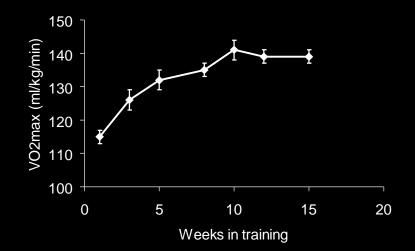
Adaptation to exercise


- $VO_{2max} = 40 \times VO_{2rest}$
- VO₂ & HR increase linearly with exercise intensity up to a maximum
- VO_{2max} = maximum oxygen consumption
- VO_{2rest} = oxygen consumption at rest

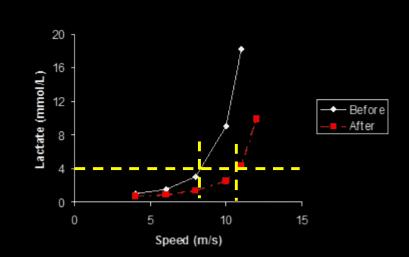
- Functional adaptations
 - Skeletal
 - Bones will respond to stresses applied to them
 - Where more force is applied, the bone responds by producing more bony tissue
 - See the picture to the right

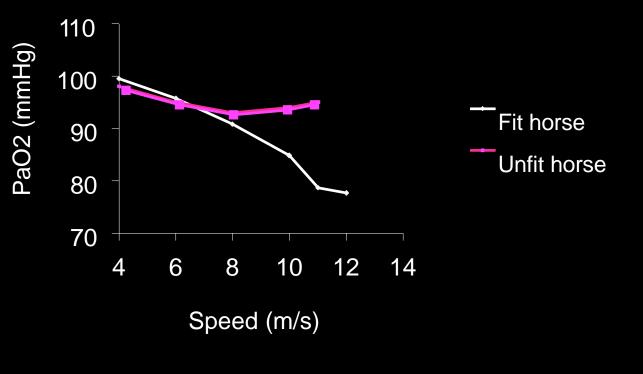


- Cardiac Changes
 - Maximum heart rate increases
 - Increased mass of heart (cardiac muscle strengthens)
 - Number of oxygen carriers (hemoglobin) in red blood cells increase by 15%

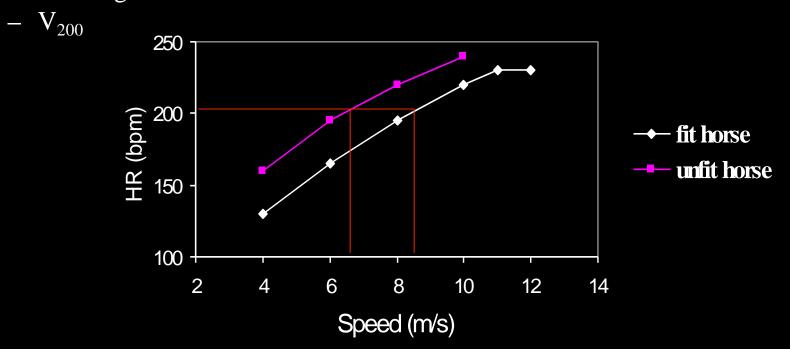


– Muscular

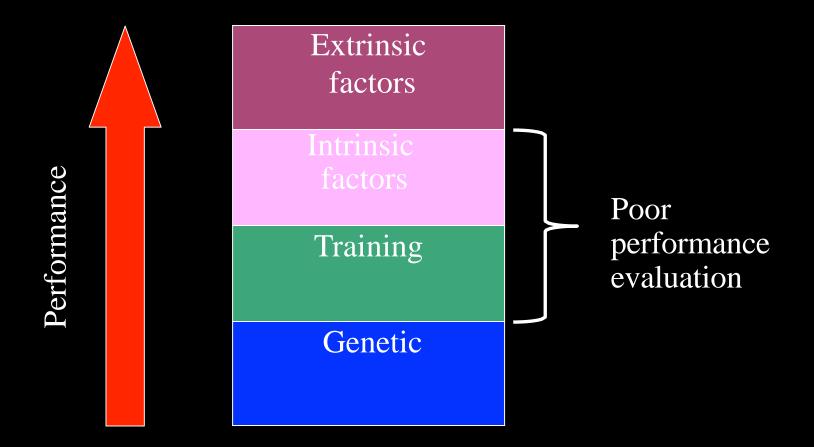

- Muscle fibers increase in size
- Increased amount of red blood cells delivered to muscle cells (increased capillary density)
- Respiratory
 - No change with training in maximum volume of air that can be breathed per minute


- VO₂max
 - Exercise capacity
 - Athletic potential
 - Training ↑ 10 25 %

- Lactate
 - A product of cells using energy without the presence of oxygen
 - Causes "the burn"
 when exercising
 heavily
 - Once fitness is achieved, the amount of lactate produced decreases



- Gas exchanges
 - Exercise
 - Training
 - PaO2 = partial pressure of oxygen
 - This value
 decreases with
 speed in the fit
 horse



• Heart rate

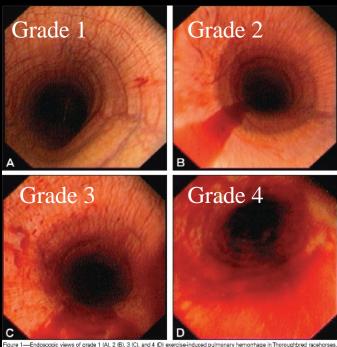
- Speed vs. HR
- Speed @ $VO_2max = speed @ V_{HRmax}$
- Training

Factors limiting performance

Factors limiting performance

Exercise type	Limiting factor	Respiratory disease severity	Body system
High intensity, short duration > 80% VO ₂ max	Oxygen delivery Lactic acid production	+	Respiratory
Moderate intensity, long duration 50-80 % VO ₂ max	Combustible, hyperthermia, dehydration	++	Cardiovascular Musculoskeletal
Low intensity, long duration < 50 % VO ₂ max	Fitness	+++	Musculoskeletal

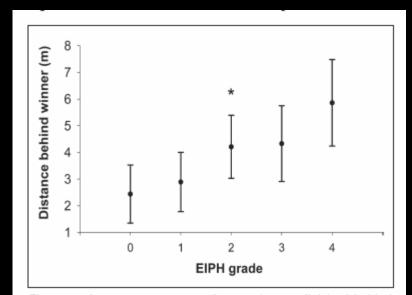
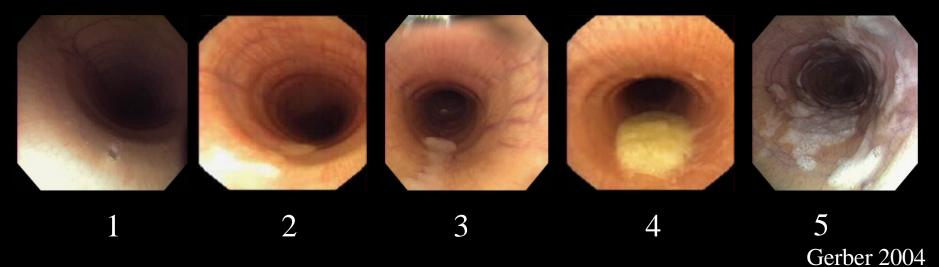
- Respiratory system
 - Upper airway endoscopy at rest

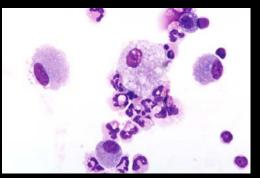


Arytenoid chondritis

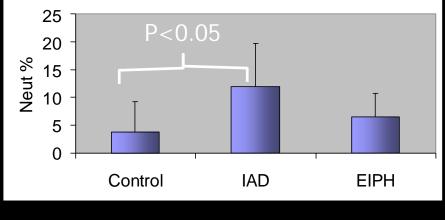
Subepiglottic Cyst

- Respiratory system
 - Lower airway endoscopy postexercise

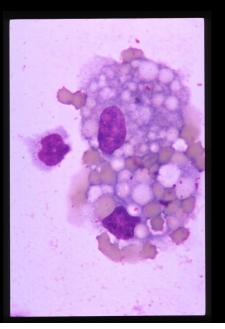



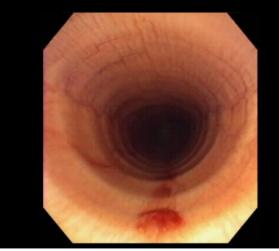

Figure 6—Least square mean distance horses finished behind the winner as a function of severity of EIPH among Thoroughbred racehorses (n = 744) in Melbourne, Australia, examined between March 1 and June 18, 2003, for EIPH after racing. Error bars represent SE. *Significantly (P < 0.05) different from value for horses with grade 0 EIPH.

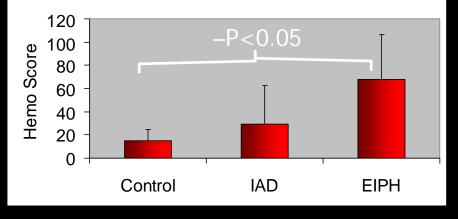
Hinchcliff et al. 2005


- Respiratory system
 - Lower airway endoscopy post-exercise
 - Grade ≥ 2 associated with poor performance in THB race horses (Holcombe et al. 2006)
 - Grade ≥ 3 associated with poor performance in sport horses (Widmer et al. 2008)

- Respiratory system
 - BALF neutrophilia (> 5 %)
 - IAD associated with poor performance
 - STBD (Rush 1995; Couroucé 2002)
 - THB (Fogarty 1991)
 - TW cytology
 - No association (Holcombe 2006)

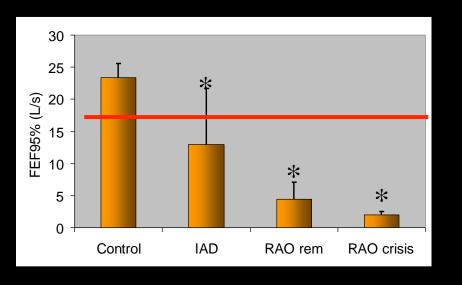


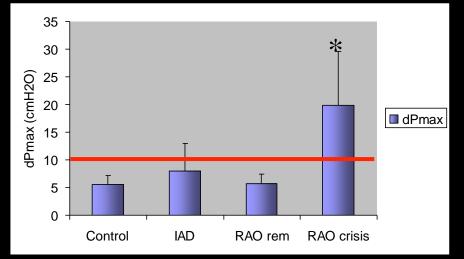




Couetil et al. 1999

- Respiratory system
 - BALF
 - EIPH
 - % hemosiderophages
 - [RBC]




Couetil et al. 1999

Advanced lung function tests

- Standard lung mechanics
- FE (forced expiration)
- FOM / IOS

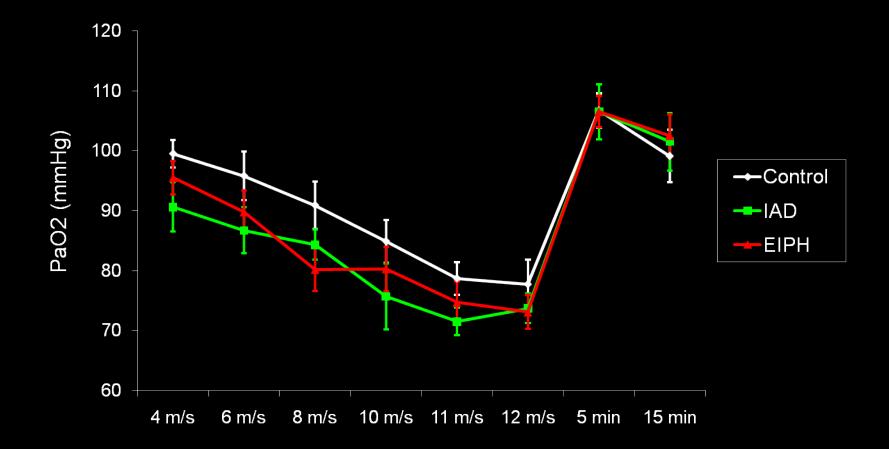
Advanced lung function tests

- Open Plethysmography
 - Commercially available
 - RAO crisis
 - IAD (AHR)

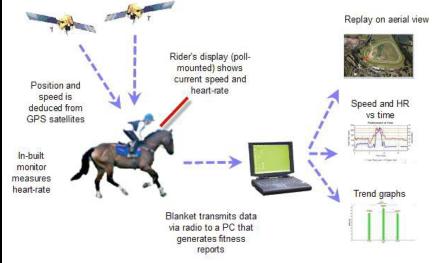
-Courtesy Ambulatory Monitoring, Inc.

• Treadmill / Field

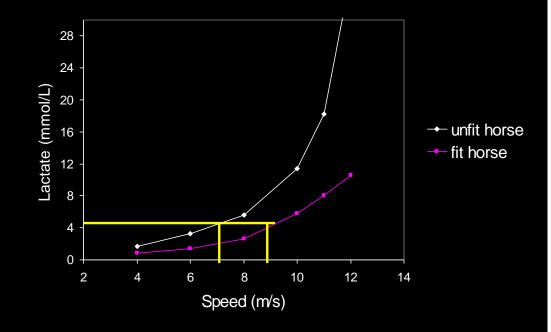
- Indications
 - Poor performance at moderate-high intensity exercise
 - Significance of abnormality found
- Advantages:
 - Controlled environment
 - Standardized protocol
 - Numerous data collected
- Weaknesses:
 - Gait differences
 - No rider
 - Costly

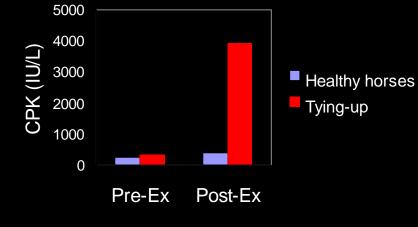

• Evaluation focused on:

- Upper airway (endoscopy)
 - Treadmill
 - Dynamic endoscopy in the field
- Gas exchanges, ventilation



Couëtil et al., Equine Vet J 1999


- Cardiovascular function
 - Exercise testing
 - Field / Treadmill
 - $V_{150} \& V_{200}$



- Musculo-skeletal system
 - Fitness (V_{La4})
 - Tying-up

Summary

Exercise type	Respiratory disease	Diagnostic test	Other tests
High intensity, short duration	UAO IAD EIPH Infections	Endoscopy (dynamic) BAL ± TW Exercise testing Sensitive LFT	Gait at high speed Lactate HR / ECG CK pre-post CBC
Moderate intensity, long duration	UAO IAD / RAO Infections	Endoscopy (rest ± dynamic) BAL ± TW Exercise testing Sensitive LFT	Lameness exam Lactate HR / ECG CBC / electrolytes
Low intensity, long duration	UAO IAD / RAO IPF Infections	Endoscopy (rest) BAL ± TW BG @ rest LFT	Thoracic X-ray / US CBC

Challenging cases

• Unproven horse

- Reference database
- Systematic evaluation
 - Treadmill
 - Field
- Cause of poor performance
 - Legitimate cause
 - Undiagnosed pathology
 - Limited ability / lack of fitness
 - Behavior / psychological problem

Questions?

Purdue University is an equal access/equal opportunity/affirmative action university.

If you have trouble accessing this document because of a disability, please contact PVM Web Communications at <u>vetwebteam@purdue.edu</u>.